ACTIVATION AND TRANSFER OF OXYGEN VIII. AUTOXIDATIVE RINGCONTRACTION OF BLOCKED DIHYDROALLOXAZINES AND TETRAHYDROPTERIDINES IN THE PRESENCE OF H2¹⁸O AND ¹⁸O₂.

H.I.X. Mager and W. Berends

Biochemical and Biophysical Laboratory of the Technological University, 67 Julianalaan, Delft, The Netherlands.

(Received in UK 30 May 1973; accepted for publication 6 September 1973)

Oxygen transfer like non-enzymic aromatic hydroxylations could be effected by systems containing a dihydroflavin or a tetrahydropteridine. The results described¹⁻⁵ are consistent with the occurrence of transient hydroperoxides like (II) which could also be considered as a pseudo-salt (III, HOO⁻). H_2O_2 production and oxygen transfer are accompanied by the formation of a carbinolamine/pseudobase (IV \rightarrow III, HO⁻). These species are rapidly converted into either: 1) the spirohydantoin (V) in anhydrous solutions or in ageous media of pH >2, or 2) quaternary salts (III, Y⁻) in more acid solution.

Additional evidence for the above scheme has now been obtained from ¹⁸O labelling studies. The spirohydantoin (m/e=274) was prepared under various conditions from 0.1 mmole of (III, \tilde{Y}) or (I) per 2 ml of solvent at 23°:

<u>1</u>) neutralization of III, Y in H₂¹⁶O afforded V according to III, Y \longrightarrow III, HO \longrightarrow IV \longrightarrow V. The M, M+1 and M+2 peaks were used to correct the mass spectra of the products from the following experiments taken under the same conditions; 2) neutralization of III, Y⁻ in H₂¹⁸O (13% enrichment) gave a mass spectrum with a corrected intensity ratio of M:M+2=1:0.15, corresponding with 13% enriched spirohydantoin; 3) autoxidation of $I + {}^{16}O_2$ in H₂¹⁸O gave a lower enrichment, indicating that about 10% of V contained ${}^{16}O$ from the gas-phase. Because of the relatively low concentration of ${}^{18}O$ in the water, further evidence had to be obtained from autoxidations by ${}^{18}O_2$ (93.5% enrichment). The following manometric experiments were performed: 4) $I + {}^{16}O_2$ in H₂¹⁶O as the blank; 5) $I + {}^{18}O_2$ in 1N acetic acid/H₂¹⁶O (pH=2.5); 6) $I + {}^{18}O_2$ in 0.1 M borax/H₂¹⁶O (pH=9.2); 7) $I + {}^{18}O_2$ in dried solvents e.g. benzene.

The ¹⁸O enrichment of the spirohydantoin obtained from Expt. <u>5</u> and <u>6</u> was 3-4% and 13%, respectively. Recrystallization of labelled V from boiling 1N AcOH/H₂¹⁶O did not lead to loss of label. Therefore, the results given by Expts. <u>5</u> and <u>6</u> demonstrate the ¹⁸O - ¹⁶O exchange in aqueous solution through the carbinolamine/pseudobase equilibrium (IV \rightleftharpoons III, HO⁻), influenced by the pH. Consequently, autoxidation in the presence of ¹⁸O₂ in anhydrous solutions (Expt. <u>7</u>) led to abundantly labelled spirohydantoin (80% of the expected label).

Similar experiments were performed with 1, 3, 6, 7, 8-pentamethyl-5, 6, 7, 8-tetrahydropteri-2, 4-dione, giving an autoxidative ringcontraction into a piperazine-spirohydantoin⁵. For example, autoxidation of 0.5 mmole of H_4 Pter + ${}^{18}O_2$ in 10 ml of non-buffered $H_2{}^{16}O$ resulted into 2-3% enriched spirohydantoin. On the other hand, a product with M/M+2=1.6 was obtained by Blair and Pearson⁶ in the experiment: H_4 Pter + ${}^{16}O_2$ + $H_2{}^{18}O$ (43.46% enrichment) in 90% pyridine. From this it could be calculated that 12-13% of the spirohydantoin then contained ${}^{16}O$ from the gasphase. However, these authors did not arrive at this right conclusion. They miscalculated the theoretical M/M+2 ratio on 1.53, while it should be 1.28, if the natural M+2 peak is also taken into consideration. Blair and Pearson did not use ${}^{18}O_2$. They neither studied the labelling at various pH nor the ${}^{18}O$ incorporation in non-aqueous media.

<u>Conclusion</u>: Our labelling experiments do not provide a basis for the alternative mechanism proposed by Blair and Pearson.

Acknowledgements.

Thanks are due to Mr. H.M.A. Buurmans for taking the mass spectra and to Ir. B. van de Graaf for valuable discussions.

References.

- 1. H.I.X. Mager and W. Berends, Biochim. Biophys. Acta 118, 440 (1966).
- 2. H.I.X. Mager, R. Addink and W. Berends, Rec. Trav. Chim. 86, 833 (1967).
- 3. H.I.X. Mager and W. Berends, Rec. Trav. Chim. 91, 611 (1972).
- 4. H.I.X. Mager and W. Berends, Rec. Trav. Chim. <u>91</u>, 630 (1972).
- 5. H.I.X. Mager and W. Berends, Rec. Trav. Chim. 91, 1137 (1972).
- 6. J.A. Blair and A.J. Pearson, Tetrahedron Letters, No. 19, 1681 (1973).